Knowing the surroundings before renovating

To design, plan, and execute a building renovation, engineers need to not only understand the building itself, but also need to know quite some about the building’s environment. Knowledge about the environment is already required in the early stages of building condition assessment. For example, to plan drone flights round a building it is important to know whether there are trees of other objects around that would inhibit the drone flight. To evaluate different design options later on in the process with respect to the energy and occupant related performance knowledge about the local weather conditions or objects that might provide shading is required. During the execution one of the most important aspects that need to be accounted for is accessibility.

The above are only a couple of examples of the required knowledge. On our projects, more often than not, this knowledge is not systematically managed using our existing information models. To overcome this problem, in her research within the European BIM-Speed project Maryam Daneshfar explored the knowledge that engineers require to for renovating buildings. She formalized her findings in an ontology that is freely available here and discussed in a preliminary conference paper. I am sure publications about the ontology will soon follow in scientific journals. I will keep you posted.

Automated Text Mining to the Rescue of Knowledge Management

Over the years I have worked with and for a great number of large engineering and design companies operating globally. The secret towards successfully managing these companies evolves largely about strategies to accurately manage knowledge. As my colleague and good friend Amy Javernick-Will wrote, this knowledge can be categorized along two main lines: local market knowledge and global technical engineering knowledge (Javernick-Will and Scott 2010). I feel that most large design and engineering organizations have a good handle on managing the local knowledge by creating decentralized organizational structures and by having an extensive merger and acquisition strategy. However, I also feel that most of the companies I worked for still struggle to a certain extent with managing their global technical expertise. Maybe these struggles are most visible in the efforts to establish central knowledge management systems and trying to convince the majority of the workforce to use this systems to post knowledge, best practice studies, and establish global discussion networks around central technical topics of importance.

The main problem with these traditional platforms is that it requires extra efforts of employees to post, maintain entries, and to discuss. In a business that is still mainly oriented on billing hours to clients this is a difficult problem, as most employees are mainly concerned with selling their valuable work hours. This of course in particular holds for the experienced and knowledgeable people that hardly ever find time to support knowledge management tasks. At the same time, however, the large design and engineering organizations sit on a large gold mine of information that could be leveraged for establishing central knowledge management systems: Reports, Project Reviews, Internal Memos, and all type of other textual data. In recent years many studies have also shown the feasibility of automatically text mining these documents to establish automated knowledge categories, dedicated search engines, and knowledge networks that link important concepts. One of my most notable colleagues in this area is for example Nora El-Gohary that has shown the potential in a myriad of different studies. In some of our recent work we also have shown the potential for renovation projects. Commercially some early start-ups are also trying to leverage this idea, such as, for example the Berlin based Architrave. However, I believe that the true potential to leverage the power of automated text mining lies with the large design and engineering companies. The methods and algorithms exist, however, the key to successful implementations lies with the availability of large textual databases that only exist at these multi-national large scale corporations.

Design optimization: Searching for the Impact

Design optimization tools become readily available and easy to use (see for example Karamba or Dynamo. It is not surprising that studies exploring these tools are exploding. Many examples exist that illustrate how to design optimization models and execute optimizations. Often, however, these studies fail to provide the true impact that was expected in terms of improving the (simulated) performance of the engineering design. Showing that the deflection of a structure could be reduce by a centimeter or the material utilization used for the structure was reduced by some percent remains of course an academic exercise that can provide little evidence on the engineering impact of optimization technologies.

As we move forward in this field of research, we need to develop more studies that move away from simply showing the feasibility to apply relatively mature optimization methods towards formalizing optimization problems that matter. Finding such problems is not easy as we cannot truly estimate the outcomes of mathematical optimizations upfront. Whether a specific impact can be achieved can only be determined through experimentation – a long, labor extensive and hard process.

Even worse, identifying relevant optimization problems through a discussion with experts is difficult. The outcomes of each design optimization needs to be compared with the solution an expert designer would have developed using his intuition and a traditional design process. Hence, working with expert designers to identify problems might be tricky. After all they are experts and probably already can come up with pretty good solutions. It seems as one would rather need to identify problems that are less well understood, but still relevant. These problems might also be scarce as relevant problems are of course much more widely researched.

In the end, I think we need to set us up towards a humble and slow approach. An approach that is time consuming, that will require large scale cooperation, and needs to face many set-back in terms of providing an impact that truly matters. Maybe this is also the reason why a disruption of design practice is not yet visible. Until we will be able to truly understand how we can impact design practice with optimization we will still need to rely on human creativity and expertise for some time to come. (not saying that we should stop our efforts.

Leadership in Engineering Meetings

Observing our students during the project assignments, we found that that leadership in integrated engineering meetings is emerging. At different times in the meetings different people take leadership roles according to the style of leadership that is required at the specific time of the meeting. Who is in lead heavily depends on the meeting dynamics and can hardly be predicted. For managing these meetings these findings mean that efforts to structure these meetings or to assign dedicated project managers to lead these meetings could be counter-effective. Moderators might still be important, but they need to step back and rather foster others to move into leadership roles, something that might come rather non-intuitive. We are working on a paper to publish these results, I will keep you posted!